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This paper formulates an edge-based smoothed point interpolation method (ES-PIM)
for solid mechanics using three-node triangular meshes. In the ES-PIM, displacement
fields are construed using the point interpolation method (polynomial PIM or radial
PIM), and hence the shape functions possess the Kronecker delta property, facilitates
the enforcement of Dirichlet boundary conditions. Strains are obtained through smooth-
ing operation over each smoothing domain associated with edges of the triangular back-
ground cells. The generalized smoothed Galerkin weak form is then used to create the
discretized system equations and the formation is weakened weak formulation. Four
schemes of selecting nodes for interpolation using the PIM have been introduced in
detail and ES-PIM models using these four schemes have been developed. Numeri-
cal studies have demonstrated that the ES-PIM possesses the following good proper-
ties: (1) the ES-PIM models have a close-to-exact stiffness, which is much softer than
for the overly-stiff FEM model and much stiffer than for the overly-soft node-based
smoothed point interpolation method (NS-PIM) model; (2) results of ES-PIMs are gen-
erally of superconvergence and “ultra-accurate”; (3) no additional degrees of freedom
are introduced, the implementation of the method is straightforward, and the method
can achieve much better efficiency than the FEM using the same set of triangular
meshes.

Keywords: Meshfree method; point interpolation method (PIM); finite element method
(FEM); weakened weak form (W 2); edge-based strain smoothing.

1. Introduction

The finite element method (FEM) is one of the most powerful numerical methods
and has been fully developed with many commercial software packages available
[Zienkiewicz and Taylor (2000); Liu and Quek (2003)]. In application of the FEM
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to practical and complicated engineering problems, triangular elements are pre-
ferred by the analysts as they can always be generated efficiently and automatically
without manual operation for complicated problem domains. However, the FEM
using linear triangular elements generally gives poor solutions, especially for stress
components. This is because of the well-known overly-stiff phenomenon of a fully
compatible FEM model of assumed displacement based on the standard Galerkin
weak form.

Many efforts have been made to solve the overly-stiff problem of a compati-
ble FEM model, such as the development of hybrid FEM formulations [Pian and
Wu (2006)]. By introducing the generalized gradient smoothing technique into the
schemes of meshfree methods and the FEMs, Liu and coworkers have developed a
class of novel numerical methods that can effectively soften the model and result in
a number of excellent properties, such as good accuracy, a high convergence rate,
and even providing the upper bound solutions [Liu (2008a,b)]. Using shape func-
tions generated by the point interpolation method (PIM), a node-based smoothed
point interpolation method (NS-PIM or LC-PIM originally) has been developed for
2D problems [Liu et al. (2005)] and 3D problems [Zhang et al. (2007b)]. The theo-
retical foundation of the NS-PIM is the generalized smoothed Galerkin weak form
with the generalized gradient smoothing techniques [Liu (2008a)] extended from
the strain smoothing technique [Chen et al. (2001)]. Using the radial PIM shape
functions and node-based strain smoothing operation, the node-based smoothed
radial point interpolation method (NS-RPIM, or LC-RPIM originally) has also been
formulated and applied for contact problems [Liu et al. (2006); Li et al. (2007)].
The PIM shape functions (with either polynomial or radial basis functions) possess
the Kronecker delta property, which facilitates simple implementations of essential
boundary conditions [Liu (2002)]. Using the same set of triangular elements, the
NS-PIM and NS-RPIM can generally obtain more accurate and higher convergence
solutions than the FEM and, more importantly, they can provide upper bound
solutions in the energy norm for the force driven elasticity problems with homo-
geneous essential boundary conditions [Liu (2008); Zhang et al. (2007a); Zhang et
al. (2008)]. Applying the strain smoothing operation to the finite elements leads
to the smoothed finite element method (SFEM) [Liu, Dai and Nguyen (2007)] and
the node-based smoothed finite element method (NS-FEM) [Liu and Nguyen et al.
(2007)]. In the scheme of the SFEM, the cell-based smoothing domains are created
over the elements (quadrilateral or n-sided polygonal), and each element can be
further divided into a number of smoothing cells [Liu and Nguyen et al. (2007);
Dai and Liu (2007)]. For the NS-FEM, the strain smoothing is performed over the
smoothing domains associated with field nodes, and the method can be applied
to triangular, four-node quadrilateral and n-sided polygonal elements. When using
triangular elements, the NS-FEM is exactly the same as the NS-PIM using lin-
ear shape functions. As the NS-PIM behaves are overly-soft, leading to temporal
instability in solving dynamic problems, the edge-based smoothed finite element
method (ES-FEM) was formulated for both 2D and 3D problems [Liu, Nguyen
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and Lam (2008); Nguyen et al. (2008)]. In the ES-FEM, the strain smoothing is
performed over domains associated with each edge of triangular background cells.
Compared with the node-based smoothing operation, the edge-based strain smooth-
ing can properly reduce the softening effects and causes the ES-FEM model to have
close-to-exact stiffness. The ES-FEM can provide more accurate results and elimi-
nate the spurious nonzero energy modes, and hence works well for both static and
dynamic problems.

In examining the above-mentioned works, Liu has established a weakened weak
(W 2) formulation using the generalized gradient smoothing technique to unify all
the developed numerical methods [Liu (2008a,b)]. The W 2 formulation seeks solu-
tions in the so-called G space, which includes both continuous and discontinuous
functions. Thus, it works for both compatible and incompatible displacements in
the framework of the FEM and meshfree methods. Using the generalized strain
smoothing technique, we can obtain the generalized smoothed Galerkin weak form
applicable to all the above-mentioned methods.

In this work, an ES-PIM is formulated using polynomial and/or radial PIM
shape functions to construct displacement fields, and smoothing the strains within
edge-based smoothing domains. Based on the triangular background cells four
schemes of selecting nodes for creating PIM shape functions have been introduced in
detail. ES-PIM models using these four schemes have been developed: the ES-PIM of
the T3 scheme [ES-PIM(T3)], the ES-PIM of the T6/3 scheme [ES-PIM(T6/3)], the
ES-RPIM of the T6 scheme [ES-RPIM(T6)] and the ES-RPIM of the T2L scheme
[ES-RPIM(T2L)]. A number of numerical examples have been studied to investi-
gate various properties of all the four models of the ES-PIM, including accuracy,
convergence rates and efficiency.

2. Summary of Basic Equations

Consider a two-dimensional static elasticity problem defined in domain Ω bounded
by Γ(Γ = Γu + Γt; Γu ∩ Γt = 0) governed by the equations

LT
d σ + b = 0 in Ω, (1)

where Ld is a matrix of the differential operator defined as

Ld

(
∂

∂x
,

∂

∂y

)
=




∂
∂x 0

0 ∂
∂y

∂
∂y

∂
∂x


 . (2)

σT = {σxx σyy τxy} is the vector that collects stress components and bT = {bx by}
is the body force vector. The stresses relate the strains via the constitutive equation
or the generalized Hook law, as follows:

σ = Dε, (3)
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in which D is the matrix of material constants, which is defined as follows:

D =
E

1 − v2


 1 v 0

v 1 0
0 0 1−v

2


 (plane stress),

(4)

D =
E(1 − v)

(1 + v)(1 − 2v)




1 v
1−v 0

v
1−v 1 0

0 0 1−2v
2(1−v)


 (plane strain),

where E is Young’s modulus and v is Poisson’s ratio.
In Eq. (3), εT = {εxx εyy 2εxy} is the vector of strains that relates to the

displacements by the compatibility equation

ε = Ldu, (5)

where u = {ux uy}T is the displacement vector. Strains obtained using Eq. (5) are
generally called compatible strains, and are termed ε̃ in this work.

There are two types of boundary conditions: Dirichlet (or essential/
displacement) boundary conditions and Neumann (or natural/stress) boundary
conditions.

Dirichlet boundary conditions:

u = uΓ on Γu, (6)

where uΓ is the vector of the prescribed displacements on the essential
boundary Γu.

Neumann boundary conditions:

LT
n σ = tΓ on Γt, (7)

where tΓ is the vector of the prescribed traction on the natural boundary Γt, and
Ln is the matrix of the unit outward normal, which can be expressed as

Ln(nx, ny) =


nx 0

0 ny

ny nx


 . (8)

3. Formulations of the ES-PIM

3.1. Displacement field approximation using the PIM

As the name implies, the point interpolation method (PIM) obtains the approxima-
tion by letting the interpolation function pass through the function values at each
scattered node within the local supporting domain. Details of the construction of
PIM shape functions can be found in the meshfree book by Liu [2002] and we give
only a very brief introduction here.
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3.1.1. Polynomial PIM and radial PIM

Two types of PIMs have been developed using different basis functions: the poly-
nomial PIM, using polynomial basis functions [Liu and Gu (2001)]; and the radial
PIM (RPIM), using radial basis functions [Wang and Liu (2002)].

For the polynomial PIM, the formulations start with the following assumption:

u(x) =
n∑

i=1

Pi(x)ai = PT (x)a, (9)

where u(x) is a field variable function defined in the Cartesian coordinate space
xT = {x y}, Pi(x) is the basis function of monomials which is usually built uti-
lizing Pascal’s triangles, ai is the corresponding coefficient, and n is the number of
nodes in the local support domain. The complete polynomial basis of orders 1 and
2 can be written as

PT (x) = {1 x y} (basis of complete first order),

PT (x) = {1 x y x2 xy y2} (basis of complete second order).
(10)

For the radial PIM, using radial basis functions augmented with polynomials,
the field function can be approximated as follows:

u(x) =
n∑

i=1

Ri(x)ai +
m∑

j=1

Pj(x)bj = RT (x)a + PT (x)b, (11)

where Ri(x) and Pj(x) are radial basis functions and polynomial basis functions
respectively, ai and bi are corresponding coefficients, n is the number of nodes in
the local support domain and m is the number of polynomial terms. There are a
number of different types of radial basis functions, and the Multiquadrics (MQ) is
used in the present work with the augment of linear polynomials.

The coefficients in Eqs. (9) and (11) can be determined by enforcing the field
function to be satisfied at the n nodes within the local support domain. Finally, the
PIM shape functions can be obtained and the field function can be expressed as

u(x) =
n∑

i=1

ϕi(x)di = ΦT (x)d, (12)

where di is a nodal function value and ϕi(x) is the PIM shape function (polynomial
PIM or radial PIM) which possesses the Kronecker delta property [Liu and Gu
(2005)]. In the above formulation, it is noticed that we need to properly select n

nodes for interpolation, ensuring a nonsingular moment matrix [Liu (2002)].

3.1.2. T schemes for node selection

In the present work, the problem domain is first discretized with three-node trian-
gular background cells which can always be generated efficiently and automatically
without manual operation. The triangular meshes have been found to be most
practical, robust, reliable and efficient for local support node selection [Liu and
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Table 1. T-schemes.

Name
Nodes selection for interpolation at any point in a

background cell
Application

T3 scheme Three nodes of the home cell Polynomial PIM

T6/3 scheme For an interior home cell, three nodes of the home
cell and three remote nodes of the three
neighboring cells.

Polynomial PIM
Radial PIM

For a boundary home cell, three nodes of the home
cell.

T6 scheme For an interior home cell, three nodes of the home
cell and three remote nodes of the three
neighboring cells

Radial PIM

For a boundary home cell, three nodes of the home
cell, two (or one) remote nodes of the
neighboring cells and one (or two) field node
which is nearest to the centroid of the home cell.

T2L scheme Nodes of the home cell plus one layer of nodes of
the cells connected to the home element nodes
(two layers of nodes are selected)

Radial PIM

Zhang et al. (2005); Kee et al. (2007)]. Thus, they are also used in this work. In the-
ory, we require the inner angles of each triangular element to satisfy 0 < θ < 180◦,
and, in practice, we require 15 < θ < 120◦, which can be easily met using a well-
established triangulation algorithm such as the Delaunay algorithm. Triangular-
cell-based node selection schemes are termed T schemes, and are listed in Table 1.

In the definition of types of T schemes, a home cell refers to the cell which holds
the point of interest (usually the quadrature sampling point). An interior home cell
is a home cell that has no edge on the boundary of the problem domain, and a
boundary home cell is a home cell which has at least one edge on the boundary.
Neighboring cells of an cell refer to the cells which share one edge with this cell.
Details of the four types of T schemes are as follows:

T3 scheme
In the T3 scheme, we simply select three nodes of the home cell of the point of
interest. As illustrated in Fig. 1(a), whether the point of interest (x) is located in
an interior cell (element i) or a boundary cell (element j), only the three nodes of
the home cell (i1–i3 or j1–j3) are selected. The T3 scheme is used only for creating
linear PIM shape functions by using polynomial basis functions. Note that the linear
PIM shape functions so constructed are exactly the same as those in the FEM using
linear triangular cells. The shape functions can always be constructed (the moment
matrix will never be singular).

T6/3 scheme
The T6/3 scheme selects six nodes to interpolate a point of interest located in an
interior cell and three nodes for those located in boundary cells. As illustrated in
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(a) Illustration of the T3 scheme of node (b) Illustration of the T6/3 scheme of node
selection. selection.
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i6
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Cell j Cell i
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First layer of nodes Second layer of nodes

(c) Illustration of the T6 scheme of node (d) Illustration of the T2L scheme of node

selection. selection for the interior element.

x

First layer of nodes Second layer of nodes

Cell j

(e) Illustration of the T2L scheme of node selection for the boundary cell.

Fig. 1. Illustration of T schemes for support node selection based on three-node triangular cells.
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Fig. 1(b), when the point of interest (x) is located in an interior cell (cell i), we select
six nodes: three nodes of the home cell (i1–i3) and another three nodes located at
the remote vertices of the three neighboring cells (i4–i6). When the point of interest
(x) is located in a boundary cell (cell j), we select only three nodes of the home
cell, i.e. j1–j3.

The T6/3 scheme was devised for creating high-order PIM shape functions,
where quadratic interpolations are performed for the interior cells and linear inter-
polations for the boundary cells. This scheme was first used in the NS-PIM [Liu
et al. (2005)]. It not only successfully overcomes the singular problem which exists in
the process of PIM approximation by using the polynomial basis but also improves
the efficiency of the method. In addition, the use of three nodes for boundary cells
insures passing the standard patch tests. Using the T6/3 scheme, the shape func-
tions can always be constructed, as long as six such nodes can be found for all the
interior cells.

T6 scheme
Same as the T6/3 scheme, the T6 scheme, shown in Fig. 1(c), selects six nodes for
an interior home cell: three nodes of the home cell and three vertices at the remote
vertices of the three neighboring cells (i1–i6 for cell i). However, for a boundary cell
(cell j), the T6 scheme still selects six nodes: three nodes of the home cell (j1–j3),
two remote nodes of the neighboring cells (j4 and j5) and one field node (j6) which
is nearest to the centroid of the home cell except for the five nodes that have been
selected.

The T6 scheme was devised for constructing radial PIM shape functions, con-
sidering both accuracy and efficiency. Different from the T6/3 scheme, it selects
six nodes for all home cells containing the point of interest. The shape functions
can always be constructed because the radial moment matrix is always invertible
for arbitrary scattered nodes so as to avoid using some specific shape parameters
[Powell (1992)].

T2L scheme
The T2L scheme selects two layers of nodes to perform interpolation based on
triangular meshes. As shown in Figs. 1(d) and 1(e), the first layer of nodes refers to
the three nodes of the home cell, and the second layer contains those nodes which
are directly connected to the three nodes of the first layer.

This scheme usually selects many more nodes than the T6 scheme, which leads
to its being more time-consuming. The shape functions can always be constructed
because the radial moment matrix is always invertible for arbitrary scattered nodes.
We can use this scheme to create radial PIM shape functions with a high order of
consistency and for extremely irregularly distributed nodes.

3.2. Edge-based smoothed strains

In the framework of W 2 formulation, the gradient of the field function (strains) will
be obtained using the following generalized smoothing operation which considers
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both continuous and discontinuous displacement functions [Liu (2008a,b)].

�
εk =




1
Ak

∫
Ωk

ε̃(x)dΩ =
1

Ak

∫
Γk

Lnu(x)dΓ, when u(x) is continuous in Ωk,

1
Ak

∫
Γk

Lnu(x)dΓ, when u(x) is discontinuous in Ωk,

(13)

where ε̃ is the compatible strain obtained using Eq. (5), �
εk is the smoothed strain

over the smoothing domain (Ωk), Ak =
∫
Ωk

dΩ is the area and Γk is the boundary
of the smoothing domain Ωk.

Note that the displacement fields in Eq. (13) can be continuous (T3 scheme) or
discontinuous (all other T schemes). To perform the generalized strain smoothing,
the problem domain is first discretized using three-node triangular background cells,
and then the stationary and nonoverlapping smoothing domains are constructed
based on these triangles such that Ω = Ω1∪Ω2∪· · ·∪ΩNs and Ωi∩Ωj = ∅, i �= j, in
which Ns is the number of smoothing domains. The rule is that we do not allow the
boundary of Ωi to share any finite parts of the discontinuous line segments for the
assumed displacement field. In the framework of the ES-PIM, smoothing domains
are constructed with respect to the edges of the triangular cells by connecting two
ends of the edge to the centroids of two adjacent cells, as illustrated in Fig. 2. Thus,
the number of smoothing domains (Ns) equals the number of edges of triangles
(Nedge).

Fig. 2. Construction of edge-based strain smoothing domains, which are stationary, nonoverlap-
ping and constructed based on the three-node triangular cells. For example, the strain smoothing
domain corresponding to edge k, Ωk, is formed by connecting two end points of edge k and two
centroids of the adjacent triangular cells.
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Substituting Eq. (5) into Eq. (13), the edge-based smoothed strain, �
εk, can now

be written in the following matrix form of nodal displacements:

�
εk =

1
Ak

∫
Γk

LnΦdidΓ =
∑

i∈Ninfl

�

Bi(xk)di, (14)

where Φ is the matrix of PIM shape functions and Ninfl is the number of field nodes
involved in constructing the smoothed strain fields within Ωk. For example, when
the T3 scheme is used and thus leads to linear displacement fields, Ninfl equals
exactly the number of nodes whose home cells are involved in the strain smoothing

upon Ωk. In Eq. (14),
�

Bi(xk) is termed the smoothed strain matrix, which can be
expressed as

�

Bi(xk) =




�

bix(xk) 0

0
�

biy(xk)
�

biy(xk)
�

bix(xk)


 . (15)

In the above equation, elements of the smoothed strain matrix are obtained as

�

bil(xk) =
1

Ak

∫
Γk

ϕi(xk)nl(xk)dΓ (l = x, y). (16)

Using the Gauss integration scheme, the above integration can be further
expressed as follows:

�

bil =
1

Ak

Nseg∑
m=1

[
NGauss∑

n=1

wnϕi (xmn)ni (xm)

]
(l = x, y) (17)

where Nseg is the number of segments of the boundary Γk, NGauss is the number of
the Gauss points located in each segment on Γk, and wn is the corresponding weight
number of the Gauss integration scheme. The value of NGauss should be determined
according to the orders of shape functions.

3.3. Discretized system equations

For the present cases, the displacement field is not continuous except when using
the polynomial PIM with the T3 scheme; we need to use the generalized smoothed
Galerkin weak form or the weakened weak form [Liu (2008a,b)]:∫

Ω

δ(�
ε(u))T D(�

ε(u))dΩ −
∫

Ω

δuTbdΩ −
∫

Γt

δuT tΓdΓ = 0, (18)

which has exactly the same form as the standard Galerkin weak form. Thus, the for-
mulation procedure is exactly the same as that in the standard FEM and all we need
to do is to use the edge-based smoothed strain �

ε in place of the compatible strain
fields ε̃. The overall procedure of the presented methods is as follows. First, the
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displacement field is constructed by using the PIM with different T schemes. Then,
the smoothed strains �

ε is obtained using Eq. (13). Finally, by substituting the
assumed displacements and the smoothed strains into the generalized Galerkin
weak form [Eq. (18)], and invoking the arbitrary nature of the variation opera-
tions, a set of discretized algebraic system equations can be obtained in the matrix
form

�

Kd =
�

f , (19)

where
�

f is the force vector, which can be obtained as
�

f = −
∫

Ω

ΦT bdΩ +
∫

Γt

ΦT tΓdΓ, (20)

and the stiffness matrix
�

K is assembled from the substiffness matrix for all the inte-
gration cells, which are exactly the edge-based smoothing domains for the present
method:

�

Kij =
Ns∑
k=1

�

Kij(k), (21)

where
�

Kij(k) is the substiffness matrix associated with the integration cell k (i.e.
smoothing domain Ωk), which is computed using the smoothed strain matrix, as
follows:

�

Kij(k) =
∫

Ωk

�

BT
i D

�

BjdΩ. (22)

4. Numerical Implementation

4.1. ES-PIM models

According to the different types of PIM shape functions used (polynomial PIM or
radial PIM) and the different T schemes adopted for selecting nodes, four ES-PIM
models have been defined:

ES-PIM(T3)
In the framework of the ES-PIM(T3), a linear displacement field is constructed using
polynomial PIM shape functions with the T3 scheme. Note that the ES-PIM(T3)
is exactly the same as the ES-FEM using triangular mesh that was developed in
the FEM setting. The displacement field in the ES-PIM(T3) is compatible.

ES-PIM(T6/3)
The ES-PIM(T6/3) is the ES-PIM where the displacement field is constructed
using polynomial PIM shape functions with the T6/3 scheme. Thus, we can obtain
quadratic displacement fields within the interior background cells and linear dis-
placements on the boundary background cells. The displacement field in the ES-
PIM(T6/3) is incompatible.
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ES-RPIM(T6)
In the ES-RPIM(T6), we obtain the displacement fields within each triangular cell
using the radial PIM shape functions with the T6 scheme. Compared to the following
method using the T2L scheme, the ES-RPIM(T6) will save much more consulting
time and effectively improve the efficiency of the method owing to using only six
nodes for interpolation. The displacement field in the ES-PIM(T6) is incompatible.

ES-RPIM(T2L)
For the ES-RPIM(T2L), the displacement field within each triangular cell is
obtained using radial PIM shape functions with the T2L scheme. Based on the
triangular cells, the T2L scheme selects two layers of nodes and generally these
nodes distribute evenly around the point of interest. However, as more nodes are
involved in the interpolation, the ES-RPIM(T2L) is more expensive than other
models. The displacement field in the ES-PIM(T2L) is incompatible.

4.2. Standard patch test

Passing the standard patch test requires that the displacements of all the inte-
rior nodes inside the patch follow “exactly” (to machine precision) the same linear
function of the imposed displacement on the boundary of the patch. Numerically,
passing the standard patch test can ensure a numerical method convergence to the
exact solution [Zienkiewicz and Taylor (2000)].

A square patch discretized using 214 irregularly distributed nodes, as shown in
Fig. 3, is studied using the present methods. The displacements are prescribed on
all the boundaries by the following linear functions:

{
ux = 0.6x,

uy = 0.6y.
(23)

The analytical solution for this patch test is a linear displacement field given by
the above equation over the entire patch. The following error norm in displacements
is used to examine the computed results:

ed =

√√√√∑Nnode
i=1 (uexact

i − unumerical
i )2∑Nnode

i=1 (uexact
i )2

, (24)

where the superscript “exact” denotes the exact or analytical solution, the super-
script “numerical” denotes a numerical solution obtained using a numerical method
including the present ES-PIM, and Nnode is the number of total field nodes.

Table 2 lists the displacement norm errors of numerical results for the standard
patch test obtained using different models of the ES-PIM. All the four models can
pass the patch test to machine accuracy and hence are capable of reproducing linear
displacement fields “exactly.” Note that to impose the linear Dirichlet boundary
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Fig. 3. Unique square patch discretized with 214 irregularly distributed nodes.

Table 2. Error norm in displacements of numerical results for the stan-
dard patch obtained using ES-PIMs.

ES-PIM models Error in displacement norm

ES-PIM(T3) (compatible) 1.7690582E−15
ES-PIM(T6/3) (incompatible) 2.6089673E−14

ES-RPIM(T6) (incompatible) 1.6020897E−15
ES-RPIM(T2L) (incompatible) 2.1726750E−15

conditions exactly along the problem boundaries, linear interpolation should be
used for the points of interest located on the boundaries.

5. Numerical Examples

Some numerical examples are studied to investigate the properties of ES-PIM mod-
els. The materials used are all linear elastic, with Young’s modulus E = 3.0 × 107

and Poisson’s ratio v = 0.3. The units can be any consistent unit system.

5.1. Cantilever beam

A benchmark problem of the cantilever beam is studied which is of length L and
height D, as shown in Fig. 4. The beam is subjected to a parabolic traction on its
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Fig. 4. Cantilever beam subjected to a parabolic traction on the right edge.

right edge. It is assumed to have unit thickness, and analytical solutions based on
the plane stress theory are available [Timoshenko and Goodier (1970)]:

ux = − py

6EI

[
(6L − 3x)x + (2 + ν)

(
y2 − D2

4

)]
, (25)

uy =
p

6EI

[
3νy2(L − x) + (4 + 5ν)

D2x

4
+ (3L − x)x2

]
, (26)

σx = −p(L − x)y
I

, σy = 0, σxy =
p

2I

[
D2

4
− y2

]
, (27)

where I is the moment of the inertia, given as I = D3/12. The values of the
parameters are taken as L = 50, D = 10 and P = −1000.

Using the same set of triangular meshes, the cantilever beam is studied using
the presented ES-PIM models. Further, we study this problem using the FEM and
NS-PIM(T3) with the same triangular meshes. The FEM can serve as the “bottom
line”: any ES-PIM model that is established based on the smoothed bilinear form
is softer than the standard FEM model, which is built based on the bilinear form.
The NS-PIM is chosen for comparison, because we know that it gives upper bound
solutions.

Figure 5 plots the convergence of the solutions in the displacement norm for
the cantilever beam solved using different methods. The present ES-PIM models,
together with the FEM and NS-PIM, converge with the reducing average nodal
spacing (h) at about the same rate, which is close to the theoretical value of 2.0
for both the weak and weakened weak (W 2) formulations [Liu (2008b)]. In terms
of accuracy, except for the NS-PIM using the T3 scheme, which obtains almost the
same results as the FEM, the present four ES-PIM models obtain about-ten-times-
more-accurate solutions than the FEM. Note that although the T2L scheme uses
many more nodes than the T6 scheme, which uses only six nodes for interpolation,
the results of these two schemes have similar accuracy and convergence rates.

Figure 6 plots the convergence of the solutions in the energy norm for the
cantilever beam problem solved using different methods. The energy norm error
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Fig. 5. Convergence of the numerical results in the displacement norm for the problem of the
cantilever beam solved using different methods and the same set of irregular triangular meshes.
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Fig. 6. Convergence of the numerical results in the energy norm for the problem of the cantilever
beam solved using different methods and the same set of irregular triangular meshes.
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indicator is defined as follows:

ee =
1
A

√
1
2

∫
Ω

(εexact − εnumerical)TD(εexact − εnumerical)dΩ, (28)

where A is the area of the problem domain. It can be found that the NS-PIM and
the present ES-PIMs have better accuracy and converge faster than the FEM. We
know that the theoretical convergence rate in the energy norm of the FEM based on
the weak form is 1.0, and Liu has found that W 2 formulation can have a theoretical
rate of 1.5 [Liu (2008b)]. For the case of the cantilever, the numerical convergence
rate of the FEM is 0.97, which is a little less than the theoretical one for weak
formulation. The convergence rates of all the methods based on W 2 formulation
are between 1.0 and 1.5. In terms of both accuracy and convergence rate, the ES-
PIM(T6/3) performs better than the ES-PIM(T3) and stands out together with the
ES-RPIM of the T6 scheme and the T2L scheme.

By plotting the errors in displacement and energy norms against the computa-
tional cost (seconds), Figs. 7 and 8 show a comparison of efficiency between all the
numerical methods studied. The results are obtained using full matrix solver. Except
for the NS-PIM(T3), which performs a little worse in terms of the displacement error,
all the models of the ES-PIM are more efficient than the FEM, with respect to both
displacement and energy error norms. The ES-PIM(T3) and ES-PIM(T6/3) perform
similarly to each other. For the two schemes of the ES-RPIM, although the T6 scheme
uses fewer nodes than the T2L scheme, the former still obtains better efficiency than
the latter. In terms of efficiency, twomodels of the ES-PIMstandout: the ES-PIM(T3)
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Fig. 7. Computational cost (seconds) vs. error in displacement norm. Comparison of efficiency
between different methods via the problem of the cantilever beam.
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Fig. 8. Computational cost (seconds) vs. error in energy norm. Comparison of efficiency between
different methods via the problem of the cantilever beam.

performed best in the displacement error norm, and the ES-PIM(T6/3) performed
best in the energy error norm.

Figure 9 plots the process of strain energies converging to the exact solution
for the cantilever using different methods. As expected, the FEM and NS-PIM give
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Fig. 9. Solutions (in the energy norm) converging to the exact solution for the problem of the
cantilever beam obtained using different methods and the same set of irregular triangular meshes.



January 2, 2009 19:35 WSPC/IJCM-j050 00166

638 G. R. Liu & G. Y. Zhang

the lower and the upper bound respectively and also provide the energy bound
to the four ES-PIM models. The ES-PIM of the T3 scheme performs more softly
than the FEM but more stiffly than the NS-PIM, and gives a lower bound solution,
which is the same as the performance of the ES-FEM using triangular elements [Liu,
Nguyen and Lam (2008a)]. As we discussed previously [Liu and Zhang (2008)], one
issue that affects the softness of the model is the order of shape functions used
in the displacement approximation: when higher order shape functions are used,
the displacements approximated in a smoothing domain are closer to the exact
solution, which will reduce the stiffening effect and vice versa. Thus, we can find
from Fig. 9 that the ES-PIM with the T6/3 scheme performs more softly than the
ES-PIM of the T3 scheme. Between the two schemes of the ES-RPIM, as the T2L
scheme uses more nodes than the T6 scheme for interpolation of displacements, the
former performs more softly than the latter. This confirms our analysis of softening
effects. Although the three models, i.e. the ES-PIM(T6/3), ES-RPIM(T6) and ES-
RPIM(T2L), perform more softly than the ES-PIM(T3), it cannot be concluded that
these three models can always obtain upper bound solutions, even if they did for this
particular case. The following numerical results will also show this phenomenon.

5.2. Infinite plate with a circular hole

Another benchmark problem is studied, which is an infinite solid with a central
circular hole (a = 1) and subjected to a unidirectional tensile (Tx = 10), as shown
in Fig. 10. Due to the twofold symmetry, only one quarter is modeled with b = 5
and symmetry conditions are imposed on the left and bottom edges. The analytical
solution is available for this problem [Timoshenko and Goodier (1970)]:

ur =
Tx

4µ

{
r

[
κ − 1

2
+ cos(2θ)

]
+

a2

r
[1 + (1 + κ) cos(2θ)] − a4

r3
cos(2θ)

}
, (29)

uθ =
Tx

4µ

[
(1 − κ)

a2

r
− r − a4

r3

]
sin(2θ), (30)

Fig. 10. Infinite solid with a circular hole subjected to uniform tensile and its quadrant model.
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σxx = Tx

{
1 − a2

r2

[
3
2

cos(2θ) + cos(4θ)
]

+
3a4

2r4
cos(4θ)

}
, (31)

σyy = −Tx

{
a2

r2

[
1
2

cos(2θ) − cos(4θ)
]

+
3a4

2r4
cos(4θ)

}
, (32)

σxy = −Tx

{
a2

r2

[
1
2

sin(2θ) + sin(4θ)
]
− 3a4

2r4
sin(4θ)

}
, (33)

where

µ =
E

2(1 + v)
, κ =




3 − 4v (plane strain),
3 − v

1 + v
(plane stress).

(34)

In the above equations, (r, θ) are the polar coordinates and θ is measured coun-
terclockwise from the positive x axis. We studied the problem under plane stress
conditions, and traction boundary conditions are imposed on the right and upper
edges with the exact stresses obtained using Eqs. (31)–(33).

The convergence property in terms of displacement of all the methods is shown
in Fig. 11. Except for the NS-PIM(T3), which obtains similar results to the FEM, all
other ES-PIM models provide much more accurate and faster convergent solutions
than the FEM. In detail, two schemes of the ES-PIM and ES-RPIM(T6) obtain
similar results, and the ES-RPIM(T2L) stands out in terms of both accuracy and
convergence rate. Figure 12 plots the convergence of the solutions in the energy
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Fig. 11. Convergence of the numerical results in the displacement norm for the problem of the
infinite solid with a hole solved using different methods and the same set of irregular triangular
meshes.
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Fig. 12. Convergence of the numerical results in the energy norm for the problem of the infinite
solid with a hole solved using different methods and the same set of irregular triangular meshes.

norm for different methods. Again, it can be found that the NS-PIM(T3) and four
ES-PIM models all obtain much better results than the FEM, which are not only
of higher accuracy but also achieve faster convergence rates.

Efficiencies of all the methods are illustrated in Figs. 13 and 14 by plotting the
errors in displacement and energy norms against the computational cost. In terms
of the displacement error, the NS-PIM(T3) performs a little worse than the FEM,
but the former is much better than the latter with respect to the energy error. All
the ES-PIM models show much higher efficiency than the FEM. Again, we found
that the ES-RPIM of the T6 scheme and the T2L scheme obtain similar efficiency,
although the latter uses more nodes for interpolation.

Figure 15 shows the process of strain energies converging to the exact one for
the infinite solid with a hole problem solved using different methods. The FEM and
NS-PIM provide lower and upper bound solutions respectively and they also bound
the solutions of ES-PIM models from two sides. As we discussed previously, the
ES-PIM of the T6/3 scheme performs more softly than the ES-PIM(T3) when the
problem domain is discretized using “more” cells. For the T6/3 scheme, we use only
six nodes for those interior elements and still use three nodes for boundary elements.
When fewer cells are used, the ratio of the interior elements is not very high and
the T6/3 scheme may perform even more stiffly than the T3 scheme. However, the
ES-PIM of the T6/3 scheme will be softer than the model of the T3 scheme when
we use “more” cells to discretize the problem domain. For the two schemes of the
ES-RPIM, again the T2L scheme performs more softly than the T6 scheme for using
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Fig. 13. Computational cost (seconds) vs. error in displacement norm. Comparison of efficiency
between different methods via the problem of the infinite solid with a hole.
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Fig. 14. Computational cost (seconds) vs. error in energy norm. Comparison of efficiency between
different methods via the problem of the infinite solid with a hole.
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Fig. 15. Solutions (in the energy norm) converging to the exact solution for the problem of the
infinite solid with a hole obtained using different methods and the same set of irregular triangular
meshes.

more nodes for interpolation. All the ES-PIMs perform more softly than the FEM
and provide lower bound solutions for this problem.

5.3. Automotive part: Rim

Finally, a typical rim of an automotive component is studied using the present
method. As shown in Fig. 16, the rim is restricted along the inner circle and a

Fig. 16. Model of an automotive rim.
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Fig. 17. Solutions (in the energy norm) converging to the exact solution for the problem of the
rim obtained using different methods and the same set of irregular triangular meshes.

uniform pressure of 100 units is applied along the outer arc edge of 60◦. The rim
is studied as a plane stress problem using the FEM, NS-PIM and present ES-PIMs
with the same set of triangular elements.

The process of strain energies converging to the reference one for the rim solved
using different methods is plotted in Fig. 17. It can be found again that the FEM
provides a lower bound, the NS-PIM provides an upper bound, and they also bound
the solutions of ES-PIMs. For the ES-PIM with the T3 and T6/3 schemes, the
former performs more softly when the problem domain is discretized using fewer
cells; but the latter will be softer than the former when we use more cells. For the
ES-RPIM of the T6 and T2L schemes, again we found that the latter performs more
softly than the latter, owing to using more nodes for interpolation.

6. Conclusions

In this work, edge-based smoothed point interpolation methods (ES-PIMs) have
been proposed, in which the displacement fields are approximated using PIM shape
functions (polynomial PIM or radial PIM) and the strains are smoothed over the
edge-based smoothing domains. Four schemes for nodes selection of interpolation
have been proposed based on triangular background cells and thus four ES-PIM
models have been developed, i.e. ES-PIM(T3), ES-PIM(T6/3), ES-RPIM(T6) and
ES-RPIM(T2L). A number of numerical example problems have been used to inves-
tigate in great detail these four ES-PIM models. Through these investigations, the
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following conclusions can be drawn:

• All the four ES-PIM models can pass the standard patch test. Thus, they are
linearly conforming and the numerical solutions of ES-PIMs are guaranteed
to converge to the exact solution, despite the use of discontinuous PIM shape
functions.

• In terms of the displacement error, the ES-PIMs obtain a similar or higher con-
vergence rate compared to the FEM and NS-PIM(T3), which depends on the
problem. In terms of accuracy, all the four ES-PIM models obtain better accu-
racy, about-ten-times-more-accurate solutions than for the FEM.

• In terms of the energy error, all the four ES-PIM models can obtain much better
accuracy and a higher convergence rate than the linear FEM. Depending on the
problem, the convergence rate of the ES-PIM may be a little higher even than
the theoretical value of 1.5 for the W 2 formulation.

• In terms of efficiency, all the ES-PIM models are more efficient than the FEM
with respect to both the errors in displacement and energy norms.

• The ES-RPIM (T6) and ES-RPIM (T2L) models obtain similar results in terms
of accuracy and convergence rate, although the latter uses more nodes for inter-
polation. Generally, the T6 scheme achieves similar or higher efficiency than the
T2L scheme and thus the former is preferred for practical computing.

• The four ES-PIM models perform more softly than the FEM and more stiffly
than the NS-PIM(T3), and hence the computed strain energies of the ES-PIM
are bounded by the FEM and NS-PIM(T3) from lower and upper.

• As to using quadratic interpolation for interior cells, the ES-PIM of the T6/3
scheme performs even more softly than the ES-PIM of the T3 scheme when the
problem domain is discretized with “more” background cells.

• The ES-RPIM(T2L) uses more nodes for interpolation than the ES-RPIM(T6),
and hence the former performs more softly than the latter.
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